The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae
نویسندگان
چکیده
Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced.
منابع مشابه
Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملP 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation
Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...
متن کاملSpt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae, transcriptional silencing occurs at three classes of genomic regions: near the telomeres, at the silent mating type loci, and within the ribosomal DNA (rDNA) repeats. In all three cases, silencing depends upon several factors, including specific types of histone modifications. In this work we have investigated the roles in silencing for Spt10 and Spt21, two proteins...
متن کاملThe Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4.
The histone H2A variant H2A.Z (Saccharomyces cerevisiae Htz1) plays roles in transcription, DNA repair, chromosome stability, and limiting telomeric silencing. The Swr1-Complex (SWR-C) inserts Htz1 into chromatin and shares several subunits with the NuA4 histone acetyltransferase. Furthermore, mutants of these two complexes share several phenotypes, suggesting they may work together. Here we sh...
متن کاملThe Impression of Histone Modification and DNA Methylation in Gastric Cancer Development: Molecular Mechanism Approach
The epigenetic alterations like histone modifications , DNA methylation and others remarkable categories including nucleosome remodeling and RNA mediated targeting have been strongly investigated recently .In this way , beside the notable importance of DNA methylation ,the histone modifications are the most important issues in the tumorogenesis and cancer progression. Moreover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011